Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT

This study (2017) investigated the molecular alterations caused by 5-MeO-DMT in human cerebral organoids. The authors found evidence for a good number of proteins that seem to be differentially expressed after drug exposure.

Abstract

“Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.”

Authors Vanja Dakic, Juliana M. Nascimento, Rafaela C. Sartore, Renata de Moraes Maciel, Draulio B. de Araujo, Sidarta Ribeiro, Daniel Martins-de-Souza & Stevens K. Rehen

Study details

Compounds studied
5-MeO-DMT

Topics studied
Neuroscience

Study characteristics
Bio/Neuro

PDF of Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT