The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors

Maurizio S. Riga a, b, c, 1, Laia Lladó-Pelfort a, b, c, 1, Francesc Artigas a, b, c, Pau Celada a, b, c, *

a Department of Neurochemistry and Neuropharmacology, Institut d’Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Spain
b CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Spain
c Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain

ARTICLE INFO

Article history:
Received 28 September 2017
Received in revised form
21 November 2017
Accepted 30 November 2017
Available online 6 December 2017

Keywords:
Serotonin hallucinogens
5-MeO-DMT
Cortico-thalamic activity
5-HT1A receptor
5-HT2A receptor

ABSTRACT

5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT1A/5-HT2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT1A and 5-HT2A receptors.

Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT2A-R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT1A-R antagonist WAY-100635.

5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity.

The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity.

This article is part of the Special Issue entitled ‘Psychedelics: New Doors, Altered Perceptions’. © 2017 Published by Elsevier Ltd.

1. Introduction

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural serotonergic hallucinogen found in a variety of plant mixtures (e.g., Virola snuffs) and in the Sonoran desert toad venom, Bufo alvarius, used in ritual ceremonies and for healing and recreational purposes (McKenna, 2004; Shen et al., 2010). The serotonergic hallucinogens evoke changes in perception, thought, mood and cognition (Nichols, 2004). Some of these agents were marketed in the past as a therapeutic aid in psychoanalysis and, more recently, several studies support their use in the treatment of psychiatric disorders, mostly mood and anxiety disorders (Carhart-Harris et al., 2016a; Mckenna, 2004; Vollenweider and Kometer, 2010). In this context, there is an increasing interest to understand the neurobiological changes and mechanisms that occur during the psychedelic experience. Moreover, psychedelic agents are used to model certain aspects of psychosis in experimental research (Geyer and Vollenweider, 2008), helping also to identify brain circuits altered in psychiatric disorders (Vollenweider et al., 1997).

Structurally, the serotonergic hallucinogens are divided in two main classes: a) indoleamines such as lysergic acid diethylamide (LSD), psilocin, psilocybin, N,N-dimethyltryptamine (DMT) and 5-MeO-DMT which bind with high affinity to several 5-HT receptors (5-HT-R), namely 5-HT1A-R, 5-HT2A-R and 5-HT2C-R (McKenna et al., 1990; Sills et al., 1984) and, b) phenylalkylamines such as mescaline...
and 2,5-dimethoxy-4-iodoamphetamine (DOI) which are highly selective for 5-HT2A-R and 5-HT2C-R (McKenna and Peroutka, 1989). Preclinical and clinical evidence support that the psychotomimetic action of these hallucinogens is, at least, partially mediated by their agonistic actions at cortical 5-HT2A-R (Gonzalez-Maeso et al., 2007; Nichols, 2004).

5-HT1A-R and 5-HT2A-Rs are involved in the behavioral and electrophysiological effects of hallucinogenic drugs and in the regulation of sensorimotor gating (Gonzalez-Maeso et al., 2007; Krebs-Thomson et al., 2006; van den Buuse et al., 2011; Vollenweider et al., 1998; Winter et al., 2000). Previous studies showed that 5-MeO-DMT and other serotonergic hallucinogens inhibited rat dorsal raphe cell firing (Demontigny and Aghajanian, 1977) and reduced 5-HT turnover (Fuxe et al., 1972) and release (Riga et al., 2016). However, these presynaptic changes are not thought to be relevant for its hallucinatory activity, which mainly depends on the activation of 5-HT1A-R and 5-HT2A-R in forebrain.

Brain electrical activity displays simultaneous rhythms of different frequency whose coalescence and synchronization is mainly dependent on the interplay of the cortico-thalamic systems (Steriade, 2006). Specifically, cortical oscillations have a key role in brain function due to their involvement in input selection, synaptic plasticity, memory consolidation and overall information processing (Buzsaki and Draguhn, 2004). Alterations in oscillatory activity have been associated with psychiatric disorders such as schizophrenia (Uhlhaas and Singer, 2010) and depression (Clark et al., 2016) and have been found in healthy volunteers after the consumption of psychotomimetic agents (Acosta-Urquidi, 2015; Kometer et al., 2015; Muthukumaraswamy et al., 2013; Riba et al., 2002). Moreover, alterations in cortical oscillatory activity have been reported in neurodevelopmental and pharmacological models of schizophrenia (Celada et al., 2008; Goto and Grace, 2006; Kargieman et al., 2007; Riga et al., 2014, 2016). Additionally, antidepressant treatments modulate cortical oscillatory activity (Leuchter et al., 2017).

Given the role of 5-HT in modulating oscillatory activity at several frequency bands (Puig and Gener, 2015), changes in 5-HT concentration after 5-MeO-DMT, together with its action on 5-HT1A-R and 5-HT2A-R are expected to affect the synchronization of neuronal networks. Hence, we previously reported that 5-MeO-DMT altered the frequency (51% excited, 35% inhibited) and pattern of discharge of layer V pyramidal neurons in the medial prefrontal cortex (mPFC) and reduced the power (energy) of low frequency oscillations in anesthetized rats (Riga et al., 2014). Additionally, 5-MeO-DMT reduced the power of low frequency oscillations in mPFC and primary sensory cortices (S1, Au1 and V1) of wild-type (WT), and —interestingly— in mPFC and V1 of 5-HT2A-R knockout (KO2A) mice, thus pointing to the involvement of 5-HT1A-R in 5-MeO-DMT effects (Riga et al., 2016). This view is also supported by behavioral studies in mice lacking 5-HT1A-R and in rats treated with the 5-HT1A-R antagonist WAY-100635 (Krebts-Thomson et al., 2006; Tricklebanik et al., 1985; van den Buuse et al., 2011; Winter et al., 2000).

Recently, clinical studies reported the efficacy of psilocybin for treatment-resistant depression, an effect perhaps related to activity changes of thalamic and PFC areas, as reported in fMRI studies (Carhart-Harris et al., 2012) and to the modulation in the oscillatory activity observed on EEG (Kometer et al., 2015). Similar actions have been reported after ketamine administration (Vollenweider and Kometer, 2010), a non-competitive NMDA-R antagonist with proven efficacy in treatment-resistant depression (Zarate et al., 2012).

At the preclinical level, previous studies in anesthetized rodents showed that psychotropic agents with different mechanism of action, such as the non-competitive NMDA receptor antagonist phencyclidine (PCP) (Kargieman et al., 2007, 2012), the preferential 5-HT2A-R agonist DOI (Celada et al., 2008) and the non-selective 5-HT1A-R agonist 5-MeO-DMT (Riga et al., 2014, 2016) markedly altered the activity of prefrontal cortex (PFC), disrupting pyramidal neuron discharge and reducing low frequency cortical oscillations. Classical and atypical antipsychotic drugs reversed these alterations (Llado-Pelfort et al., 2016; Riga et al., 2016). In the present study, we investigated the actions of 5-MeO-DMT on cortico-thalamic oscillatory activity in freely moving mice. We also examined the potential involvement of 5-HT1A-R using genetic (5-HT2A-R knockout –KO2A-mice) and pharmacological manipulations. The main objectives of the study were to gain further insight into the neurobiological basis of hallucinations and to identify new targets for its treatment. Additionally, given the potential use of serotonergic hallucinogens to treat mood and anxiety disorders, we aimed to increase the knowledge of the actions of 5-MeO-DMT in key brain areas related to these psychiatric disorders.

2. Material and methods

2.1. Animals

We used 9-16 week-old male homozygous 5-HT2A-R knockout mice (referred as KO2A) and wild-type mice (WT) of the same genetic background (C57/BL6). Generation of KO2A strain has been reported elsewhere (Fiorica-Howells et al., 2002). From these initial sources, mice were transferred to the animal facility of the University of Barcelona School of Medicine, where stable colonies were grown. Animals were kept in a controlled environment (12 h light—dark cycle and 22 ± 2 °C room temperature) with food and water provided ad libitum. KO2A mice do not show adaptive changes of 5-HT1A-R and 5-HT2A-R (Bortolozzi et al., 2010), relevant for the action of serotonergic hallucinogens. Animal care followed the European Union regulations (directive 2010/63 of 22/09/2010) and was approved by the Institutional Animal Care and Use Committee.

2.2. Drugs and treatments

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and WAY-100635 maleate (WAY) were from Sigma/RBI (Natick, MA). All drugs were dissolved in saline (vehicle) and injected subcutaneously (s.c.) in the same volume (10 ml/kg). The doses used are expressed as free bases and were chosen according to the literature (Riga et al., 2016; van den Buuse et al., 2011) or from pilot experiments.

On the recording day, WT and KO2A mice were treated, with a time interval between injections of 30 min, with: 1) saline + saline (10 ml/kg each injection) (SAL + SAL) (n = 13 and 7 for WT and KO2A mice, respectively); 2) saline + 5-MeO-DMT (5 mg/kg) (SAL + 5-MeO-DMT) (n = 10 and 9 for WT and KO2A mice, respectively). In order to study the potential prevention of 5-MeO-DMT-induced effects on cortico-thalamic activity, KO2A mice were also administered with: 3) WAY-100635 (5-HT1A-R antagonist) (0.5 mg/kg) + 5-MeO-DMT (WAY + 5-MeO-DMT) (n = 8) and 4) WAY-100635 + saline (WAY + SAL) (n = 8). Each mouse was treated randomly once with each pharmacological treatment as shown in Supplementary Fig. S1A.

2.3. Electrophysiology: local field potential (LFP) recordings in freely-moving mice

A total of 24 mice (14 WT and 10 KO2A) were implanted with Plastics One electrodes (Virgina, USA) under isoflurane anesthesia (induction: 2.5%; maintenance: 1.5%). Animals were pretreated (30 min before anesthesia inhalation) with an analgesic (Buprenorphine: 0.05 mg/kg s.c.). Stereotaxic coordinates were taken from...
were given during 2 s.c.) and a prophylactic antibiotic (Enroxi 40 mg/kg s.c.) and a prophylactic antibiotic (Enro mix 7.5 mg/kg s.c.) were given during 2–3 consecutive days after surgery.

Local field potential (LFP) recordings were performed in a 40 × 40 cm open field using a digital Lynx system and Cheetah software (Neuralynx, Montana, USA). The signal was obtained at 3.2 kHz sampling rate and filtered between 0.1 and 100 Hz. All recordings were post-processed downsampled 10 times before analysis. Recordings were made once a week starting one week after surgery. All mice were habituated to the experimental setting for 4–5 days before recordings. On the recording day, first and second drugs (or vehicle) were injected 30 min apart, and recordings were performed for 30 min after each injection. The time to assess 5-MeO-DMT effect was chosen according to pharmacokinetic and behavioral studies (Halberstadt et al., 2011; Shen et al., 2011; van den Buuse et al., 2011). There was a wash-out period of at least one week after each experiment (Supplementary Figs. S1A–B).

At the end of recordings, mice were euthanized according to an anesthetic overdose. Histological localization of electrodes was performed by passage of current (intensity: 0.15 mA; duration: 10 s). Brain sections were stained according to standard procedures, to verify recordings sites (Supplementary Fig. S1C).

2.4. Data and statistical analysis

Data were imported to MATLAB environment (MathWorks, MA, USA) for off-line power and coherence wavelet analysis, using built-in and self-developed routines. The frequency bands analyzed were delta (0.2–4 Hz), theta (4–10 Hz), beta (10–30 Hz) and gamma (30–80 Hz). Data were averaged in 5-min periods. Injection periods (5 min after 1st and 2nd drug administrations) were excluded from analysis. Data were expressed as areas under curve (AUCs) of every treatment period (5–30 min post-1st and 2nd drug administration). Comparisons were made by determining the two AUCs for each mouse. In order to compare pharmacological treatments, normalized AUCs (POWER values (%) and COHERENCE values (%)) were used. In basal value and antagonist (WAY-100635) comparisons, we used AUCs of raw data.

Data are shown as mean ± SEM. Statistical analysis was performed using Student’s t-tests (for dependent or independent samples) or three- or two-way ANOVAs (genotype, area and band or treatment and time as factors) followed by post-hoc analysis using Duncan’s test, as appropriate. Statistical significance was set at the 95% confidence level (two tailed).

3. Results

3.1. Effect of saline on oscillatory activity in cortico-thalamic networks in WT mice

Before assessing 5-MeO-DMT effect on power spectra and coherences, we evaluated the effect of a saline injection on these variables in order to subtract them from the effect of 5-MeO-DMT, thus avoiding the contribution of mouse manipulation, injection and environmental adaptation. To this end, we compared post-with pre-saline administration values for each animal.

WT mice showed a small, yet significant, decrease in gamma power in the 30-min period post-saline injection in all examined areas. Moreover, they showed a slight increase in delta, theta and beta powers in V1 and MD in the same period. Effects were small, ranging between 93 ± 3 and 115 ± 4% of pre-saline administration values (Supplementary Table S1A).

On the other hand, saline injection did not affect coherences between all examined areas in WT mice (Supplementary Table S1B).

3.2. Effect of 5-MeO-DMT on oscillatory activity in cortico-thalamic networks in WT mice

In WT mice, 5-MeO-DMT increased theta and gamma bands in mPFC and delta power in V1. Moreover, in MD, 5-MeO-DMT decreased marginally beta power. 5-MeO-DMT effect was more marked in cortical than in thalamic areas. All values and statistical significances are shown in Table 1A. Fig. 1 shows the time course of the effects of SAL + SAL and SAL + 5-MeO-DMT for all analyzed bands and areas.

On the other hand, in WT mice, 5-MeO-DMT increased mPFC-V1 coherence in the beta band and mPFC-MD coherence in theta and beta bands. Finally, 5-MeO-DMT increased V1-MD coherence in the beta band (Table 1B). Fig. 2 shows the time course of the effect of SAL + SAL and SAL + 5-MeO-DMT for all analyzed coherences.

3.3. Oscillatory activity in cortico-thalamic networks: comparison between WT and KO2A mice

Given the high affinity for 5-HT1A-R showed by 5-MeO-DMT, we decided to study the involvement of this receptor using genetic (KO2A mice) and 5-HT1A-R pharmacological manipulations to better understand the mechanism of action of 5-MeO-DMT.

Comparisons of basal power spectra between genotypes are shown in Table 2. Delta band power did not differ between genotypes in mPFC and V1. Likewise, there were no differences between genotypes in theta, beta and gamma powers in mPFC whereas significant differences were found in theta, beta and gamma bands in V1. Similarly to mPFC, there were no differences between genotypes in the power of all analyzed bands in MD.

On the other hand, the mPFC-V1 coherence differed between genotypes in delta band but not in other bands. In other analyzed coherences (mPFC-MD and V1-MD), no significant differences were found for all examined bands.

3.4. Effect of saline on oscillatory activity in cortico-thalamic networks in KO2A mice

As observed in WT mice, KO2A mice showed a small decrease in gamma power in the 30-min period post-saline injection in all examined areas and a slight increase in delta, theta and beta powers in V1 and MD in the same period. Effects were small, ranging between 93 ± 3 and 121 ± 4% of pre-saline administration values (Supplementary Table S1A).

Regarding interregional coherence of oscillations, only KO2A mice showed a slight increase in mPFC-MD coherence in theta and in mPFC-V1 and V1-MD coherences in beta. Effects were small ranging between 101.8 ± 0.4 and 105.0 ± 1.2% of pre-saline administration values (Supplementary Table S1B).

3.5. Effect of 5-MeO-DMT on oscillatory activity in cortico-thalamic networks in KO2A mice

In mPFC, 5-MeO-DMT increased the power of all examined bands in KO2A mice. Moreover, in V1, 5-MeO-DMT increased delta, theta and beta bands. Finally, 5-MeO-DMT increased delta power in MD. 5-MeO-DMT effect was more marked in cortical than in thalamic areas. All values and statistical significances are shown in

bregma and brain surface (mm) according to the mouse brain atlas (Franklin and Paxinos, 2008): medial prefrontal cortex (mPFC) AP + 2.2, L-0.3, DV-2.0; primary visual cortex (V1) AP-3.6, L-2.5, DV-0.5. Some mice (9 WT and 9 KO2A) were also implanted in mediodorsal nucleus of the thalamus (MD) AP-1.2, L-0.4, DV-3. A ground screw and three stabilizer screws were also implanted. The implant was fixed with dental cement. Buprenorphine (0.05 mg/kg s.c.) and a prophylactic antibiotic (Enrofloxacin 7.5 mg/kg s.c.) were given during 2–3 consecutive days after surgery.

Recordings were made once a week starting one week after surgery.
Table 1

Effect of 5-MeO-DMT administration on medial prefrontal cortex (mPFC), primary visual cortex (V1) and mediodorsal thalamus (MD) power spectra (A) and coherences between each area (B) in wild type (WT) and 5-HT2A-R know-out (KO2A) mice. Data are represented as Mean ± SEM of % of change of areas under curves 5-MeO-DMT versus 30 min pre-drug administration values (POWER and COHERENCE values (%)). Saline effect was subtracted from the effect of 5-MeO-DMT. Note that 5-MeO-DMT effects on power spectra are more marked in cortical areas than MD thalamus nucleus. On the other hand, 5-MeO-DMT affects all coherences in delta only in KO2A while in theta only mPFC-V1 and mPFC-MD coherences are altered. Curiously, all analyzed coherences in beta are disrupted by 5-MeO-DMT regardless of genotype. Statistical analysis: Student’s t tests for dependent samples; Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001 versus 30 min pre-drug administration values; a p = 0.052, b p = 0.059 (marginally significant); A) n = 10 and 9 for mPFC/V1 in WT and KO2A mice, respectively; n = 5 and 9 for MD in WT and KO2A mice, respectively; B) n = 10 and 9 for mPFC-V1 coherence in WT and KO2A mice, respectively; n = 5 and 9 for mPFC-MD/V1-MD coherences in WT and KO2A, respectively.

Table 1A

<table>
<thead>
<tr>
<th></th>
<th>Delta</th>
<th>Theta</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPFC</td>
<td>95 ± 7</td>
<td>135 ± 1*</td>
<td>106 ± 6</td>
</tr>
<tr>
<td>V1</td>
<td>142 ± 2*</td>
<td>90 ± 8</td>
<td>94 ± 6</td>
</tr>
<tr>
<td>MD</td>
<td>121 ± 2</td>
<td>80 ± 8</td>
<td>76 ± 9a</td>
</tr>
<tr>
<td>KO2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPFC</td>
<td>135 ± 1*</td>
<td>149 ± 1***</td>
<td>149 ± 6***</td>
</tr>
<tr>
<td>V1</td>
<td>258 ± 4**</td>
<td>162 ± 2*</td>
<td>117 ± 7*</td>
</tr>
<tr>
<td>MD</td>
<td>153 ± 1**</td>
<td>94 ± 8</td>
<td>98 ± 8</td>
</tr>
</tbody>
</table>

Table 1B

<table>
<thead>
<tr>
<th></th>
<th>Delta</th>
<th>Theta</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPFC-V1</td>
<td>97 ± 5</td>
<td>102 ± 2</td>
<td>108 ± 1***</td>
</tr>
<tr>
<td>mPFC-MD</td>
<td>109 ± 5</td>
<td>116 ± 1***</td>
<td>113 ± 1***</td>
</tr>
<tr>
<td>V1-MD</td>
<td>107 ± 9</td>
<td>98 ± 4</td>
<td>112 ± 2**</td>
</tr>
<tr>
<td>KO2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPFC-V1</td>
<td>113 ± 4*</td>
<td>107 ± 2*</td>
<td>113 ± 1***</td>
</tr>
<tr>
<td>mPFC-MD</td>
<td>112 ± 5*</td>
<td>112 ± 2**</td>
<td>122 ± 2***</td>
</tr>
<tr>
<td>V1-MD</td>
<td>112 ± 5 b</td>
<td>101 ± 3</td>
<td>119 ± 2***</td>
</tr>
</tbody>
</table>

Table 1A. Fig. 3 shows the time course of the effects of SAL + SAL and SAL + 5-MeO-DMT for all analyzed bands and areas.

On the other hand, 5-MeO-DMT increased the mPFC-V1 coherence in delta, theta and beta bands of KO2A mice. Finally, 5-MeO-DMT increased V1-MD coherence in delta (marginally) and beta bands of KO2A mice. All data and statistical significances are shown in Table 1B. Fig. 4 shows the time course of the effect of SAL + SAL and SAL + 5-MeO-DMT for all analyzed inter-regional coherences.
Fig. 2. Effect of 5-MeO-DMT on the coherence between areas (primary visual cortex, V1; mediodorsal thalamus, MD; medial prefrontal cortex, mPFC) for the delta, theta and beta bands in freely-moving wild-type (WT) mice during 30 min post-administration. Mice treated with 5-MeO-DMT received saline 30 min before active drug (SAL + 5-MeO-DMT; filled symbols). Control groups for each genotype received two saline injections (SAL + SAL; open symbols). First and second arrows indicate SAL and SAL or 5-MeO-DMT, respectively. Data are given as percentage of saline values (administered 30 min before 5-MeO-DMT injection) in 5-min periods. Injection periods (5 min post- 1st and 2nd injections) were excluded from the calculations. Rectangles indicate significant 5-MeO-DMT effects (versus 30-min pre-drug administration values). Data shown in Table 1.

Table 2
Characteristics of medial prefrontal cortex (mPFC), primary visual cortex (V1) and mediodorsal thalamus (MD) power spectra (A) and coherences between each area (B) in wild type (WT) and 5-HT2A-R knock-out (KO2A) mice: comparison between genotypes. Data are represented as Mean ± SEM of power (μV²) (A) or coherences (0–1) (B) of areas under curves corresponding to a 25-min period after s.c. saline administration. Each mouse was used once in statistical analysis (first free-drug recording). Note that significant differences among genotypes are found only in V1 (theta, beta and gamma) for power spectra and in mPFC-V1 coherence in delta band.

Statistical analysis: Student’s t tests for independent samples; Statistical significance: *p < 0.05, **p < 0.01 versus WT; a) n = 13 and 10 for mPFC/V1 in WT and KO2A, respectively; n = 8 and 9 for MD in WT and KO2A, respectively; b) n = 13 and 10 for mPFC- V1 coherence in WT and KO2A, respectively; n = 8 and 9 for mPFC-MD/V1-MD coherences in WT and KO2A, respectively.

<table>
<thead>
<tr>
<th></th>
<th>A) Power spectra</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>delta</td>
<td>theta</td>
<td>beta</td>
<td>gamma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mPFC</td>
<td>V1</td>
<td>MD</td>
<td>mPFC</td>
<td>V1</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WT</td>
<td>KO2A</td>
<td>WT</td>
<td>KO2A</td>
<td>WT</td>
<td>KO2A</td>
</tr>
<tr>
<td>mPFC</td>
<td>0.116 ± 0.012</td>
<td>0.165 ± 0.043</td>
<td>0.155 ± 0.016</td>
<td>0.242 ± 0.044</td>
<td>0.060 ± 0.006</td>
<td>0.076 ± 0.007</td>
<td>0.143 ± 0.022</td>
</tr>
<tr>
<td>V1</td>
<td>0.046 ± 0.004</td>
<td>0.062 ± 0.010</td>
<td>0.129 ± 0.011</td>
<td>0.189 ± 0.023</td>
<td>0.068 ± 0.006</td>
<td>0.094 ± 0.008</td>
<td>0.146 ± 0.013</td>
</tr>
<tr>
<td>MD</td>
<td>0.054 ± 0.006</td>
<td>0.052 ± 0.007</td>
<td>0.130 ± 0.005</td>
<td>0.155 ± 0.013</td>
<td>0.056 ± 0.003</td>
<td>0.063 ± 0.003</td>
<td>0.120 ± 0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B) Coherences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>delta</td>
<td>theta</td>
<td>beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mPFC-V1</td>
<td>WT</td>
<td>KO2A</td>
<td>0.585 ± 0.027</td>
<td>0.512 ± 0.012 *</td>
<td>0.434 ± 0.010</td>
<td>0.415 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>mPFC-MD</td>
<td>WT</td>
<td>KO2A</td>
<td>0.735 ± 0.033</td>
<td>0.687 ± 0.023</td>
<td>0.555 ± 0.017</td>
<td>0.552 ± 0.011</td>
</tr>
<tr>
<td></td>
<td>V1-MD</td>
<td>WT</td>
<td>KO2A</td>
<td>0.535 ± 0.030</td>
<td>0.510 ± 0.021</td>
<td>0.492 ± 0.041</td>
<td>0.447 ± 0.013</td>
</tr>
</tbody>
</table>

Table 1
Characteristics of medial prefrontal cortex (mPFC), primary visual cortex (V1) and mediodorsal thalamus (MD) power spectra (A) and coherences between each area (B) in wild type (WT) and 5-HT2A-R knock-out (KO2A) mice: comparison between genotypes. Data are represented as Mean ± SEM of power (μV²) (A) or coherences (0–1) (B) of areas under curves corresponding to a 25-min period after s.c. saline administration. Each mouse was used once in statistical analysis (first free-drug recording). Note that significant differences among genotypes are found only in V1 (theta, beta and gamma) for power spectra and in mPFC-V1 coherence in delta band. Statistical analysis: Student’s t tests for independent samples; Statistical significance: *p < 0.05, **p < 0.01 versus WT; a) n = 13 and 10 for mPFC/V1 in WT and KO2A, respectively; n = 8 and 9 for MD in WT and KO2A, respectively; b) n = 13 and 10 for mPFC- V1 coherence in WT and KO2A, respectively; n = 8 and 9 for mPFC-MD/V1-MD coherences in WT and KO2A, respectively.
3.6. Effect of 5-MeO-DMT on oscillatory activity in cortico-thalamic networks: comparison between genotypes, areas and band frequencies

We carried out a further statistical analysis using three-way ANOVAs for power and coherence data in order to assess the effect of genotype, area and band, as well as their interactions. In terms of power, the most affected areas by 5-MeO-DMT were mPFC and V1. The more marked effect was an elevation of delta power in V1 of KO2A mice (258 ± 44% of pre-drug administration values) suggesting a relevant action of 5-MeO-DMT on 5-HT1A-R in V1 delta band (Table 3A). Three-way ANOVA is shown in Supplementary Table S2A. Post-hoc analysis revealed significant differences between 5-MeO-DMT effects in WT and KO2A mice in V1, between 5-MeO-DMT effect on delta oscillation in KO2A in V1 and other areas and between 5-MeO-DMT effects in V1 delta in KO2A compared to other bands in this area (Table 3A).

5-MeO-DMT markedly affected the coherences between mPFC and MD. The more marked effect was observed in the beta band of KO2A mice (122 ± 2% of pre-drug administration values), indicating that 5-MeO-DMT increased mPFC-MD coherence via activation of 5-HT1A-R. Three-way ANOVA values are shown in Supplementary Table S2A. Significant post-hoc differences between 5-MeO-DMT effects in mPFC-MD and mPFC-V1/V1-MD coherences at different bands were found (Table 3B).

3.7. Effects of WAY-100635 on oscillatory activity in cortico-thalamic networks in KO2A mice

Additionally in order to study the potential involvement of 5-HT1A-R in 5-MeO-DMT effects, we examined the actions of the 5-HT1A-R antagonist WAY-100635 (WAY) alone. To this end, we compared the effect of WAY with saline administration. For each animal, only values corresponding to the first saline and antagonist administrations (Supplementary Fig. 1A) were used for the comparison.

WAY increased beta power in the MD of KO2A mice but it did not alter coherence in any band and genotype examined (Supplementary Table S3).

3.8. Prevention by WAY-100635 of 5-MeO-DMT effect on oscillatory activity in cortico-thalamic networks in KO2A mice

5-MeO-DMT induced differential effects on oscillatory activity in WT and KO2A mice. Here, we decided to confirm the dependence on 5-HT1A-R of 5-MeO-DMT effects found in KO2A mice. To this aim, we pretreated KO2A mice with WAY-100635 in order to prevent 5-MeO-DMT effects. We focused only in the prevention of the significant effects of 5-MeO-DMT on oscillatory activity shown in Figs. 3—4 and Table 1.

In KO2A, WAY-100635 prevented all effects on the different band power induced by 5-MeO-DMT, regardless of the area or band examined (Fig. 5). Similarly to the effects on power, pretreatment with WAY-100635 avoided 5-MeO-DMT effects in all interregion coherences examined, except in delta V1-MD coherence (Fig. 5). Statistical analysis is shown in Supplementary Table S2B.

4. Discussion

The present results indicate that the hallucinatory effect of 5-MeO-DMT may be associated with a simultaneous alteration of the oscillatory activity in primary visual cortex (V1) and in cortico-
thalamic (mPFC-MD) circuits. Interestingly, the effects of 5-MeO-DMT on the different intraregional power bands and interregional band coherences examined were more marked in KO2A mice, indicating that 5-HT1A-R activation plays a relevant role in the psychotropic action of 5-MeO-DMT. The greater effect size on oscillatory activity in KO2A mice suggests that the simultaneous activation of 5-HT2A-R (absent in KO2A mice) attenuates 5-HT1A-R-mediated effects, an effect possibly related to the high cellular co-expression on both receptors in PFC and their opposite role on pyramidal cell function (Amargos-Bosch et al., 2004; Araneda and Andrade, 1991; Puig et al., 2005) (see below for extended discussion). The involvement of 5-HT1A-R in the effect of 5-MeO-DMT adds to previous observations in visual cortex of anesthetized mice (Riga et al., 2016) and suggests, if translated to humans, the therapeutic potential of 5-HT1A-R antagonists in the treatment of visual and perhaps other forms of hallucinations, which lack appropriate therapy. Moreover, 5-MeO-DMT-induced changes on oscillatory activity and synchronization in PFC and thalamus, two keys areas implicated in major depression.

Serotonergic hallucinogens alter cortical oscillatory activity, affecting frequency bands in a differential manner (Acosta-Urquidi, 2015; Muthukumaraswamy et al., 2013; Riba et al., 2002). 5-MeO-DMT markedly increased theta and gamma bands in mPFC, as also observed in the frontal area of individuals inhaling 5-MeO-DMT (Acosta-Urquidi, 2015). Interestingly, 5-MeO-DMT increased the power of some bands (mPFC-delta; mPFC-beta, V1-theta or V1-beta) in KO2A but not in WT mice. These results suggest that 5-MeO-DMT has opposite effects when acting on 5-HT1A-R (increase, as observed in KO2A mice) or 5-HT2A-R (decrease). Hence, the effect on WT mice reflects the balance between these opposite actions. Accordingly, 5-HT1A-R agonists increase (Murck et al., 2001; Seifritz et al., 1996; Tissier et al., 1993), and the preferential 5-HT2A-R agonists DMT and psilocybin decrease delta power (Muthukumaraswamy et al., 2013; Riba et al., 2002).

In anesthetized KO2A mice, 5-MeO-DMT decreases delta power in mPFC, an effect dependent on 5-HT1A-R activation (Riga et al., 2016). In awake KO2A mice, 5-MeO-DMT increased delta power, an effect also dependent on 5-HT1A-R activation, as observed by its prevention by WAY-100635. The opposite effect of 5-MeO-DMT on delta band power in anesthetized vs awake KO2A mice may be due to a different cortical excitation/inhibition balance. As 5-HT1A-R is expressed in GABAergic and pyramidal neurons (Santana et al., 2004), our observations in KO2A mice may reflect a preferential action of 5-MeO-DMT on 5-HT1A-R in GABAergic interneurons (anesthetized) or in pyramidal neurons (awake). In support of this view, low doses of the 5-HT1A-R agonist 8-OH-DPAT decreased delta power (Udó-Pelfort et al., unpublished results) and increased pyramidal neuron discharge in anesthetized rats, through a preferential action on 5-HT1A-R located on fast-spiking GABAergic interneurons (Udó-Pelfort et al., 2012). Additionally, WAY-100635

Fig. 4. Effect of 5-MeO-DMT on the coherence between areas (primary visual cortex, V1; mediodorsal thalamus, MD; medial prefrontal cortex, mPFC) for the delta, theta and beta bands in freely-moving 5-HT2A-R knock-out (KO2A) mice during 30 min post-administration. Mice treated with 5-MeO-DMT received saline 30 min before active drug (SAL + 5-MeO-DMT; filled symbols). Control groups for each genotype received two saline injections (SAL + SAL; open symbols). First and second arrows indicate SAL and SAL or 5-MeO-DMT, respectively. Data are given as percentage of saline values (administered 30 min before 5-MeO-DMT injection) in 5-min periods. Injection periods (5 min post-1st and 2nd injections) were excluded from the calculations. Rectangles indicate significant 5-MeO-DMT effects (versus 30-min pre-drug administration values). Data shown in Table 1.
had no effect on delta activity in awake mice (Supplementary Table S3) whereas it increased delta activity in anesthetized mice (Riga et al., 2016).

Patients with schizophrenia show alterations in cortical gamma oscillations when performing cognitive tasks (reductions) (Cho et al., 2006), or during resting state (increases) (Kikuchi et al., 2011) when compared with control subjects. Likewise, cortical gamma power increases in healthy individuals taking 5-MeO-DMT (Acosta-Urquidi, 2015). In agreement with these observations, here we found an increase in mPFC-gamma band power after 5-MeO-DMT. On the contrary, the 5-HT1A/2C-R agonist DOI decreases gamma power in freely-moving rats (Wood et al., 2012). The different effect evoked by these two serotonergic hallucinogens (DOI and 5-MeO-DMT) may be due to the preferential action of 5-MeO-DMT on 5-HT1A-R (McKenna et al., 1990), given the similar effect of this drug on mPFC-gamma band in WT and KO2A mice. Interestingly, WAY-100635 prevented 5-MeO-DMT effect on mPFC-gamma band, supporting the involvement of 5-HT1A-R in this effect (whereas that of DOI depends on 5-HT2A-R). Consistently, the preferential 5-HT1A-R agonist 5-MeO-DMT increases (Acosta-Urquidi, 2015) whereas the preferential 5-HT2A-R agonist psilocybin decreases (Muthukumaraswamy et al., 2013) gamma power in humans.

Table 3

Effect of 5-MeO-DMT on power spectra (A) and coherences (B) for the two genotypes in the areas and band frequencies analyzed. All mice are pretreated with s.c. saline. The effect of vehicle was subtracted from the effect of 5-MeO-DMT. Note that i) maximal effect of 5-MeO-DMT on power spectra was produced in V1 delta band of KO2A mice, and ii) maximal effect on coherence was on mPFC-MD coherence.

Statistical analysis: Three-way ANOVA (genotype, area or coherence and band as factors) (See Supplementary Table S2A). Statistical significance: *p < 0.05 versus a different area at the same band in the same genotype; *p < 0.05 versus WT in the same area at the same band; *p < 0.05 versus a different band in the same area and genotype; *p = 0.055 versus MD theta in WT mice; *p = 0.058 versus MD theta in KO2A mice; *p = 0.060 versus MD gamma in WT mice; d p = 0.054 versus MD delta in KO2A mice; *p = 0.059 versus mPFC-V1 delta in WT mice. Power spectra (A): n = 10 and 9 for mPFC/V1 in WT and KO2A mice, respectively; n = 5 and 9 for MD in WT and KO2A mice, respectively. Coherences (B): n = 10 and 9 for mPFC-V1 in WT and KO2A mice, respectively; n = 5 and 9 for mPFC-MD/V1-MD in WT and KO2A mice, respectively.

A) Power spectra

<table>
<thead>
<tr>
<th>Area</th>
<th>Gen</th>
<th>Band</th>
<th>5-MeO-DMT effect</th>
<th>Post-hoc significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPFC</td>
<td>WT</td>
<td>delta</td>
<td>95 ± 7</td>
<td># vs delta WT</td>
</tr>
<tr>
<td>KO2A</td>
<td></td>
<td></td>
<td>135 ± 1</td>
<td>α vs delta VI</td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>135 ± 1</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>149 ± 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>106 ± 6</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>149 ± 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>gamma</td>
<td>155 ± 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>172 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>WT</td>
<td>delta</td>
<td>142 ± 2</td>
<td>c vs gamma V1 and MD</td>
</tr>
<tr>
<td>KO2A</td>
<td>258 ± 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>90 ± 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>162 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>94 ± 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>117 ± 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>gamma</td>
<td>111 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>102 ± 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>WT</td>
<td>delta</td>
<td>121 ± 2</td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>153 ± 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>80 ± 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>94 ± 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>76 ± 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>98 ± 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>gamma</td>
<td>101 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>106 ± 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) Coherences

<table>
<thead>
<tr>
<th>Areas</th>
<th>Gen</th>
<th>Band</th>
<th>5-MeO-DMT effect</th>
<th>Post-hoc significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPFC-V1</td>
<td>WT</td>
<td>delta</td>
<td>97 ± 5</td>
<td># vs delta WT</td>
</tr>
<tr>
<td>KO2A</td>
<td>113 ± 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>102 ± 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>107 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>108 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>113 ± 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPFC-MD</td>
<td>WT</td>
<td>delta</td>
<td>109 ± 5</td>
<td>* vs delta mPFC-V1</td>
</tr>
<tr>
<td>KO2A</td>
<td>112 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>116 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>112 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>113 ± 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>122 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1-MD</td>
<td>WT</td>
<td>delta</td>
<td>107 ± 9</td>
<td>* vs theta mPFC-V1 and V1-MD</td>
</tr>
<tr>
<td>KO2A</td>
<td>112 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>theta</td>
<td>98 ± 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>101 ± 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>beta</td>
<td>112 ± 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO2A</td>
<td>119 ± 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focusing on the activity of the Visual Cortex, visual hallucinations are associated with increases of basal activity in the visual cortex (Ffytche et al., 1998) and aberrant activity within visual thalamo-cortical networks (Carter and Ffytche, 2015). Here we report that 5-MeO-DMT altered oscillatory activity on V1. Interestingly, individuals taking Ayahuasca (an Amazonian beverage containing dimethyltryptamines) show an altered oscillatory activity in the occipital cortex (visual cortex in humans) in parallel with alterations in visual perception (de Araujo et al., 2012; Riba et al., 2002; Valle et al., 2016). Also, in humans, 5-MeO-DMT-induced hallucinations have been related to increases on parietal cortex gamma band (Acosta-Urquidi, 2015).

5-HT2A-R and 5-HT1A-R are expressed in the visual cortex (Dyck and Cynader, 1993; Gerstl et al., 2008; Moreau et al., 2010; Saulin et al., 2012; Watakabe et al., 2009). 5-HT acting on these receptors may modulate the excitatory/inhibitory balance, as observed in mPFC (Amargos-Bosch et al., 2004). Specifically, 5-HT2A-R mediated distinct, and layer dependent, modulation of layer III and VI inputs to layer V pyramidal neurons, according with the specific expression of these receptors on pyramidal neurons and interneurons (Moreau et al., 2010). Moreover, 5-HT2A-R plays a fundamental role in the pathogenesis of visual hallucinations (Moreau et al., 2010) and altered expression has been reported in patients with visual hallucinations and untreated schizophrenic subjects (Ballanger et al., 2010; Gonzalez-Maeso et al., 2008).

KO2A mice showed an altered V1 baseline oscillatory activity in theta, beta and gamma bands power. Additionally, KO2A mice showed a decrease in theta coherence between mPFC and V1. These alterations may be related to the role of 5-HT2A-R on visual processing (Kometer et al., 2011; Moreau et al., 2010).

5-MeO-DMT alters low band oscillatory activity of visual and prefrontal cortices more markedly in KO2A than in WT mice, suggesting a preferential action on 5-HT1A-R and/or opposite effects of 5-MeO-DMT acting on 5-HT2A-R (decrease power) and 5-HT1A-R (increase power). Consistent with this last hypothesis, and as occurs in mPFC, we found a more marked increase in V1-delta band in KO2A mice. Interestingly, DMT decreases delta and theta bands.

Fig. 5. The 5-HT1A-R antagonist WAY-100635 (WAY) prevent 5-MeO-DMT effects in a regionally-selective manner on power spectra (A–H) and coherences (I–P) between medial prefrontal cortex (mPFC), primary visual cortex (V1) and mediodorsal thalamus (MD) of 5-HT2A-R knock-out (KO2A) mice. Mice are pretreated with saline (SAL) and WAY. Data are shown in % of areas under curve of SAL or WAY (pretreatments) values. Rectangles show significant preventions. Note that WAY prevented all of 5-MeO-DMT effects (except in delta V1-MD coherence) in all areas or bands analyzed.

Statistical analysis: Two-way ANOVA (treatment and time as factors) (see Supplementary Table S2B). Statistical significance: *p < 0.05 versus 1st s.c. injection values; #p < 0.05 versus saline values; 2p < 0.05 versus SAL + 5-MeO-DMT values; 2p = 0.050 and 2p = 0.057 (marginally significant) versus 1st s.c. injection values. In mPFC, V1 and mPFC-V1 coherence: n = 7, 9, 8 and 8 for SAL + SAL, SAL + 5-MeO-DMT, WAY + 5-MeO-DMT and WAY + SAL, respectively; In MD and mPFC-MD and V1-MD coherences n = 6, 9, 7, 8 for SAL + SAL, SAL + 5-MeO-DMT, WAY + 5-MeO-DMT and WAY + SAL, respectively.
over the temporo-parieto occipital junction, supporting its preferential action on 5-HT2A-R (Riba et al., 2004).

Serotonin hallucinogens decrease alpha oscillations and increase cerebral blood flow (CBF) on visual areas (Carhart-Harris et al., 2016b; de Araujo et al., 2012; Riba et al., 2004). In humans, alpha (8–13 Hz) rhythm dominates EEG in sensory brain areas during relaxed wakefulness and is strongly influenced by thalamic activity. In rats, the equivalent predominant band oscillates approximately at 5–12 Hz (Hughes and Crunelli, 2005). Despite we have not specifically analyzed the alpha band, our analyses in V1 found no significant change on theta (4–10 Hz) or beta (10–30 Hz) bands in WT whereas power of both bands increased in KO2A mice after 5-MeO-DMT, suggesting again that 5-MeO-DMT induces opposite effects on these bands acting on 5-HT2A-R (decrease power) or 5-HT1A-R (increase power). Moreover, all alterations were prevented by WAY-100635, supporting the involvement of 5-HT1A-R.

The effects of 5-MeO-DMT were more marked in V1 and mPFC than in MD thalamus, consistent with the high density of 5-HT1A-R and 5-HT2A-R in these cortical areas and their absence in thalamic nuclei (Pompeiano et al., 1992, 1994; Santana et al., 2004). Hence, the increase in delta band power induced by 5-MeO-DMT in MD cannot be explained by a local effect and suggests the involvement of neuronal populations in organizing thalamo-cortical activity (Steriade, 2006), in agreement with the dense reciprocal connectivity between PFC and MD (Gabbott et al., 2005; Kuroda et al., 1998). This view is also supported by the increased coherence between mPFC and MD after 5-MeO-DMT administration. However, given the absence of a direct connectivity between V1 and MD, the increased V1–MD coherence may be explained by the direct reciprocal V1–PFC and MD–PFC connectivity. Not surprisingly, 5-MeO-DMT did not alter the power of higher frequency bands in MD, which are more dependent on local cellular and synaptic activity than delta oscillations.

The role of serotonergic neurotransmission on the synchrony between brain areas is poorly known. Coherence gives information about inter-area synchronization, measuring interactions between two neuronal populations and is considered a very sensitive measure of high cognitive processes (Rappelsberger and Petsche, 1988; Sarnthein et al., 1998). 5-MeO-DMT increased coherence in beta band between all areas examined. Similarly, in humans, 5-MeO-DMT intake increases perception and coherence between cortical areas (Acosta-Urquidi, 2015). As discussed above, coherence between mPFC and MD thalamus was the most affected coherence, probably due to the dense and reciprocal cortico-thalamic connectivity between these two areas (Gabbott et al., 2005; Groenewegen and Uylings, 2000).

The changes in coherence evoked by 5-MeO-DMT in WT and KO2A mice indicate that 5-HT1A-R and 5-HT2A-R are involved in inter-area synchrony. Interestingly, pretreatment with WAY100635 avoided all 5-MeO-DMT effects on power spectra and coherences except in delta V1-MD coherence, supporting that 5-HT1A-R plays a relevant role in regulating the synchrony between the 3 areas examined.

Non-competitive NMDA-R antagonist such as ketamine (Monteggi and Zarate, 2015; Zarate et al., 2006) and serotonin hallucinogens such as psilocybin (Carhart-Harris et al., 2016a) show clinical efficacy in depressed patients resistant to other forms of treatment (Baumeister et al., 2014; Volkmann and Kometer, 2010). Likewise, several studies have reported antidepressant efficacy of Ayahuasca, containing dimethyltryptamines in varying proportions (Sanches et al., 2016). Psychodelics such as Ayahuasca decrease the activity of several areas of the default mode network (DMN), a set of brain regions that are active during awake resting state (Muthukumaraswamy et al., 2013; Palhano-Fontes et al., 2015; Raichle et al., 2001) and change the coupling of brain oscillations, reducing the influence of frontal to posterior areas (Alonso et al., 2015).

Antidepressant treatment (Leuchter et al., 2017) and meditation (Cahn and Polich, 2006) increase frontal theta activity. In this regard, the increase in PFC theta activity evoked by 5-MeO-DMT may be related to a potential antidepressant activity. Also, optogenetic theta rhythm stimulation of the antero-cingulate cortex reduced anxiety-related behavior in mice (Weible et al., 2017). Finally, 5-MeO-DMT increased PFC-MD coherence. Interestingly, depressive patients show a decrease in the connectivity between the thalamus and the antero-cingulate cortex (Anand et al., 2005a) whereas antidepressant treatment and LSD increase cortico-thalamic connectivity (Anand et al., 2005b; Tagliazucchi et al., 2016). Likewise, a recent study reported on the antidepressant-like effects of deleting GluN2B subunits in MD-PFC synapses (Miller et al., 2017).

The main limitation of this study, as in most rodent studies, is the difficulty to extrapolate the present findings to human brain. Despite this, it is interesting to note that 5-MeO-DMT affects oscillatory activity in human volunteers in a manner similar to that seen here in mouse brain, possibly reflecting the similar role of 5-HT1A-R and 5-HT2A-R in the control of cortical oscillatory activity.

5. Conclusions

The present results indicate that 5-MeO-DMT simultaneously alters population activity in PFC-MD circuits and in V1 (primary visual cortex), effects likely related to the visual hallucinations and introspection induced by this agent. In terms of power, the greater effect size was found in V1 (delta band) whereas the most affected synchrony was that between mPFC and MD. The more marked effects in KO2A mice, as well as their prevention by WAY-100635 support a preferential action of 5-MeO-DMT on 5-HT1A receptors. This suggests the potential usefulness of 5-HT1A antagonists to treat visual, and perhaps, other forms of hallucinations. Finally, the increase in PFC-theta band power and mPFC-MD coherence may be related to its potential antidepressant action. Overall, the present study contributes to the elucidation of the mechanism of action of psychadelic agents and the brain circuits involved.

Funding

This work was supported by grants from Instituto de Salud Carlos III (PI09/01245, PI12/00156 and PI16/00287 (PN de I+D+I 2008–2011, ISCIII-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy and Competitiveness cofinanced by the European Regional Development Fund. “Una manera de hacer Europa”), and by grant SAF2015-68346-P (MINECO, FEDER EU) Centro de Investigación Biomédica en Red de Salud Mental, (CIBERSAM P82, 11INT3. Support from the Generalitat de Catalunya (2014 SGR798) is also acknowledged. MR was supported by an IDIBAPS fellowship.

Conflicts of interest

F.A. has received consulting and educational honoraria from Lundbeck and he and P.C. are PI and CoPI respectively of two grants from Lundbeck. F.A. is also member of the scientific advisory board of Neurolixis. F.A. is author of the patent WO/2011/131693 for the siRNA and ASO (antisense oligonucleotides) molecules. The rest of authors declare no conflict of interest.

Acknowledgements

We acknowledge Noemí Jurado and Mercedes Nuñez for skillful technical assistance.
Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuropharmacol.2017.11.049.

References

Limbic, 19, 512–517.

