Psychedelics and Neuroscience

Psychedelics and neuroscience is one of the 'psychedelics and ...' topics that we're currently making a page for. At this moment you can find all papers (in our database) on this topic below.

Research Papers Compared Measured Researchers Gaps Companies

State of Research


Quality of Conclusions


Data Points

TBD Papers studying this directly
TBD Companies working on this

Make Blossom Sustainable

Blossom is free to use and will always be.

Supporting Blossom makes this possible. When you support Blossom for €20/month, you get access to our downloadable files, influence over the direction of our 'psychedelics and ...' pages, and future projects.

Our vision is that psychedelics can be used worldwide to better the lives of as many as 450 million people who suffer from mental health problems. Our information hopes to make that vision come to life just a little faster.

Neuroscience Research

Here will be a narrative, readable, summary of the research.


In our literature study we came across the following studies of note. Browse the meta, review, commentary articles for an overview. Check out the individual studies for specific experiments and observations.

Reviewing the ketamine model for schizophrenia

2013 | Frohlich, J, Van Horn, J. D.

This review (2013) examines the psychotomimetic model of ketamine, with regard to its inhibitory glutaminergic transmission that causes similar abnormalities in cortical oscillations as observed in patients with schizophrenia. This similarity may be indicative of an early developmental stage leading up to acute schizophrenia, given that the hallucinatory profile of ketamine entails visual hallucinations, whereas chronic schizophrenia is marked almost exclusively by auditory hallucinations.

Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia

2013 | Brogaard, B.

This literature review (2013) evaluates synaesthesia and proposes that the role of excessive serotonin (genetic or drug induced) plays a role through increasing excitability and connectedness of brain regions.

The induction of synaesthesia with chemical agents: a systematic review

2013 | Luke, D. P., Terhune, D. B.

This review (2013) investigates how psychedelics (serotonin agonists) elicit synaesthesia (merging of senses) and what neurological mechanisms may underlie these effects.

Recreational use of psychedelics is associated with elevated personality trait openness: Exploration of associations with brain serotonin markers

2019| Carhart-Harris, R. L., Erritzoe, D., Fisher, P. M., Frokjaer, V. G., Knudsen, G. M., Smith, J. M.

This cross-sectional study (n=45) evaluates associations between recreational use of psychedelics and MDMA and (a) personality measures and (b) key markers of cerebral serotonergic signaling (serotonin transporter and serotonin-2A-receptor binding).

Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo

2021| Delagarza, K., Gregg, I., Kwan, A. C., Liao, C., Savalia, N., Shao, L-X,

This pre-print article shows that brain cells, specifically the layer five pyramidal neurons in mice, grew by 10% after the introduction of psilocybin. The effects were still present 30 days later, providing more evidence for brain plasticity as an underlying mechanism of psychedelic-assisted therapies' long-lasting effects.

Effects of ketamine on brain function during metacognition of episodic memory

2021| Delis, A., Ettinger, U., Hurlemann, R., Lehmann, M., Neumann, C., Schultz, J., Trautner, P., Wasserthal, S.

This double-blind placebo-controlled fMRI study (n=53) on ketamine (r-ketamine, continuous iv) and cognition found that ketamine increased metacognitive bias, negatively impacted metacognitive sensitivity, and increased activation of posterior brain areas.

Broadband Cortical Desynchronization Underlies the Human Psychedelic State

2013| Bolstridge, M., Brookes, M. J., Carhart-Harris, R. L., Erritzoe, D., Feilding, A., Friston, K. J., Moran, R. J., Muthukumaraswamy, S., Nutt, D. J., Papadopoulos, A., Sessa, B., Singh, K. D., Williams, T. M.

This study (n=15) suggests that the subjective effects of psychedelics (psilocybin, 2mg iv) may be due to the desynchronization of oscillatory rhythms in the cortex. This effect was caused by the increased excitability of deep-layer pyramidal neurons (by serotonin 2a receptor excitation).

The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas

2010| Carhart-Harris, R. L., Friston, K. J.

This theory-building paper (2010) attempts to provide models of neural substrates for a variety of Freudian hypothetical constructs.

Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior

2007| Ang, R., Bradley-Moore, M., Chan, P., Ge, Y., Gingrich, J. A., González-Maeso, J., Ivic, L., Lira, A., Sealfon, S. C., Weisstaub, N. V., Zhou, M., Zhou, Q.

This study (2007) identifies the biological reasons, the specific regulation of Gi/o proteins and Src, why psychedelics that affect the 5-HT2A receptor have hallucinogenic effects while agonists (lusuride) do not.

Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings

2021| Arias, M., Carhart-Harris, R. L., Cavanna, F., de la Fuente, L. A., Ilksoy, Y., Pallavicini, C., Perl, Y. S., Romero, C., Tagliazucchi, E., Timmermann, C., Zamberlan, F.

This naturalistic (open-label) study (n=35) with smoked DMT (~40mg) confirmed earlier findings (but now outside the lab) that DMT significantly decreased alpha, and increased delta and gamma oscillations. The latter also correlated with subjective mystical-type experiences (MEQ).

The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network

2015| Andrade, K. C., Crippa, J. A., de Araujo, D. B., Hallak, J. E., Palhano-Fontes, F., Ribeiro, S., Santos, A. C., Tófoli, L.F.

This open-label study (n=9) investigated the effects of ayahuasca (123,2mg DMT, 32,34mg Harmine) on the functional brain connectivity of experienced users, and found a decrease in the activity of core structures of the Default Mode Network (DMN).


This section compares the research with psychedelics to other therapies, medicines, or treatments.


This section highlights the various measures used and their use in research.


Who are the top researches in this area, the ones who have done the groundbreaking research.


What do we not know at this time? Where are the gaps in our knowledge and are we closing it?


The companies that are actively engaged in researching this topic or (planning to) provide therapy focussed on this topic.

Outside Academia

This section highlights everything done outside of academia, from popular press to books and non academic research.